Performance Analysis of Connectionist Paradigms for Modeling Chaotic Behavior of Stock Indices

نویسندگان

  • Ajith Abraham
  • Ninan Sajith Philip
  • Baikunth Nath
  • P. Saratchandran
چکیده

The use of intelligent systems for stock market predictions has been widely established. In this paper, we investigate how the seemingly chaotic behavior of stock markets could be well represented using several connectionist paradigms and soft computing techniques. To demonstrate the different techniques, we considered Nasdaq-100 index of Nasdaq Stock Market and the S&P CNX NIFTY stock index. We analyzed 7 year’s Nasdaq 100 main index values and 4 year’s NIFTY index values. This paper investigates the development of a reliable and efficient technique to model the seemingly chaotic behavior of stock markets. We considered an artificial neural network trained using Levenberg-Marquardt algorithm, Support Vector Machine (SVM), Takagi-Sugeno neuro-fuzzy model and a Difference Boosting Neural Network (DBNN). This paper briefly explains how the different connectionist paradigms could be formulated using different learning methods and then investigates whether they can provide the required level of performance, which are sufficiently good and robust so as to provide a reliable forecast model for stock market indices. Experiment results reveal that all the connectionist paradigms considered could represent the stock indices behavior very accurately.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Modeling Chaotic Behavior of Stock Indices Using Intelligent Paradigms

The use of intelligent systems for stock market predictions has been widely established. In this paper, we investigate how the seemingly chaotic behavior of stock markets could be well represented using several connectionist paradigms and soft computing techniques. To demonstrate the different techniques, we considered Nasdaq-100 index of Nasdaq Stock Market and the S&P CNX NIFTY stock index. W...

متن کامل

Hybrid-Learning Methods for Stock Index Modeling

The use of intelligent systems for stock market prediction has been widely established. In this paper, we investigate how the seemingly chaotic behavior of stock markets could be well represented using several connectionist paradigms and soft computing techniques. To demonstrate the different techniques, we consider the Nasdaq-100 index of Nasdaq Stock Market and the S&P CNX NIFTY stock index. ...

متن کامل

On the Predictability of Price Fluctuations in Tehran Stock Exchange A Correlation Dimension Estimation Approach

This paper employs a general non-linear analysis tool to analyse the nature of time series associated with the price (returns) of a particular company in Tehran Stock Exchange. It is shown that the behavior of the process associated with the price (returns) time-series of this company is weakly chaotic, and due to the non-random behavior of the process, short term prediction of stock price is p...

متن کامل

On the Predictability of Price Fluctuations in Tehran Stock Exchange A Correlation Dimension Estimation Approach

This paper employs a general non-linear analysis tool to analyse the nature of time series associated with the price (returns) of a particular company in Tehran Stock Exchange. It is shown that the behavior of the process associated with the price (returns) time-series of this company is weakly chaotic, and due to the non-random behavior of the process, short term prediction of stock price is p...

متن کامل

Integrating Ensemble of Intelligent Systems for Modeling Stock Indices

The use of intelligent systems for stock market predictions has been widely established. In this paper, we investigate how the seemingly chaotic behavior of stock markets could be well-represented using ensemble of intelligent paradigms. To demonstrate the proposed technique, we considered Nasdaq-100 index of Nasdaq Stock Market and the S&P CNX NIFTY stock index. The intelligent paradigms consi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2002